E-HOMOLUPANE DERIVATIVES SUBSTITUTED IN POSITION 17 AND 22a. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR AND IR SPECTRA*

Vaclav Krecek ${ }^{a}$, Stanislav Hilgard ${ }^{a}$, Milos Budesinsky ${ }^{b}$ and \dagger Alois Vystrcil ${ }^{a}$
${ }^{a}$ Department of Organic Chemistry,
Charles University, 12840 Prague 2, The Czech Republic
${ }^{b}$ Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic, 16610 Prague 6, The Czech Republic

Abstract

A series of derivatives with various oxygen functionalities in positions 17,22 a or 19,20 was prepared from diene I and olefin XVI by addition and oxidation reactions. The structure of the obtained compounds was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy. The kind of intramolecular association of the 17α-hydroxy group was studied in connection with modification of the side chain and substitution in position 22a. Complete assignment of the hydrogen signals and most of the coupling constants was accomplished using a combination of 1D and 2D NMR techniques. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are discussed.

In connection with the preparation and confirmation of structure of the E-homolupane derivatives I and $X V I$, we described ${ }^{1-4}$ some of their derivatives substituted in positions 17 and 22a. Now, we have extended this set by preparing further derivatives such as diols, their monoacetates and ketols with modified side chain. The obtained series of 17,22a-disubstituted derivatives with various functional groups in positions 19 or 19,20 was utilized for the study of interactions between these substituents.

Hydroxylation of diene I with osmium tetroxide affected only the 17(22a) double bond giving rise to diol $I I I$; the isopropylidene group in the side chain (unlike the isopropenyl group ${ }^{5}$) did not react (the ${ }^{1} \mathrm{H}$ NMR spectrum contained $s p^{2}$-methyl group signals at $\delta 1.735$ and 1.692 and the ${ }^{13} \mathrm{C}$ NMR spectrum exhibited signals at $\delta 129.01$ and 128.14 due to the $s p^{2}$-carbon atoms of the tetrasubstituted double bond). The diol III was characterized as the monoacetate $I V$ (characteristic CH-OAc signals: $\delta 5.33 \mathrm{dd}, 1 \mathrm{H}$ and $2.09 \mathrm{~s}, 3 \mathrm{H}$) and its oxidation with chromium trioxide in pyridine gave ketol V (in the ${ }^{1} \mathrm{H}$ NMR spectrum the $\mathrm{CH}-\mathrm{OH}$ signal of the starting diol $I I I$ at $\delta 3.91$ disappeared

[^0]

I

$I I, \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OH}$

VI
$I I I, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H}$
$I V, \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{OAc} ; \mathrm{R}^{3}=\mathrm{H}$
V, $\mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}+\mathrm{R}^{3}=0$

VII, $\mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{H}$
$X, \quad \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$

$X V I$ VIII, $\mathrm{R}^{1}=O A C ; \mathrm{R}^{2}=\mathrm{H} \quad X I, \quad \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=O H$ $I X, \quad \mathrm{R}^{1}+\mathrm{R}^{2}=0$
$X I I, \mathrm{R}^{1}=\mathrm{R}^{3}=H ; \mathrm{R}^{2}=O A C$
XIII, $\mathrm{R}^{1} \equiv \mathrm{R}^{2}=\mathrm{OH} ; \mathrm{R}^{3}=\mathrm{H}$
$X I V, \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{OAC} ; \mathrm{R}^{3}=\mathrm{H}$
$X V, \quad \mathrm{R}^{1}=O H ; \mathrm{R}^{2}+\mathrm{R}^{3}=0$

XVII

XVIII, $\mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
XIX, $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OH}$
$X X$,
$X X I, \quad \mathrm{R}^{1}=O H ; \mathrm{R}^{2}=O A C ; \mathrm{R}^{3}=\mathrm{H}$
$X X I I, \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}+\mathrm{R}^{3}=0$
$X X I I I, \mathrm{R}^{1}=O H ; \mathrm{R}^{2}+\mathrm{R}^{3}=0$

Atoms in compounds $V I I-I X$ are numbered for the purpose of NMR only; the numbering does not correspond to the IUPAC nomenclature.
and the ${ }^{13} \mathrm{C}$ NMR spectrum exhibited a $\mathrm{C}=\mathrm{O}$ signal at $\delta 209.88$ instead of the $\mathrm{CH}-\mathrm{OH}$ signal at $\delta 67.13$ for $I I I$).
In contrast, epoxidation of diene I led to the diepoxide VI. The presence of the epoxy groupings was confirmed by IR absorption at 898 and $890 \mathrm{~cm}^{-1}$ and by the ${ }^{13} \mathrm{C}$ NMR spectrum (three $\mathrm{C}-\mathrm{O}$ and one $\mathrm{CH}-\mathrm{O}$ carbon signal at $\delta 64.54,65.00,60.36$ and 57.27). As we have found already earlier ${ }^{4}$, in addition reactions the 17(22a) double bond in diene I is attacked selectively from the α-side. The absence of hydrogen at $\mathrm{C}-17$ in compounds III and VI did not alow a direct configurational proof using the vicinal interaction $J(17,18)$; however, as a convincing argument served the observed longrange coupling between protons $\mathrm{H}-18$ and $\mathrm{H}-21 \alpha(J \approx 2 \mathrm{~Hz}$ for compounds $I I I$ and $V I)$: this can be explained only by $c i s$-annelation of the rings D / E where the interacting protons are separated by four bonds in a planar zig-zag arrangement. For this reason we assigned configuration α to the functional groups introduced.

Ozonolysis of olefin $I V$ afforded a trinorketone which was assigned structure VIII on the basis of the following observations. Its IR spectrum exhibited a band of carbonyl in a six-membered ring ($1716 \mathrm{~cm}^{-1}$), bands of a hydroxyl (3600 and $3430 \mathrm{~cm}^{-1}$) and a band of acetoxy group ($1728 \mathrm{~cm}^{-1}$). The ${ }^{13} \mathrm{C}$ NMR spectrum indicated retention of the OH and OAc groups (carbon atoms of the type $\mathrm{C}-\mathrm{O}$ and $\mathrm{CH}-\mathrm{O}$ at $\delta 75.99$ and 69.12), loss of three carbon atoms of the isopropylidene side chain, and the presence of a keto group ($\mathrm{C}=\mathrm{O}$ at $\delta 212.64$). A detailed analysis of signals due to E-ring protons confirmed unequivocally the presence of a keto group in position 19 as well as retention of the $c i s$-annelation $\mathrm{D} / \mathrm{E}(J(18,21 \alpha)=1.5 \mathrm{~Hz})$. As a side-product of the ozonolysis we isolated an epoxy derivative which was assigned the structure XIV. Its IR spectrum showed the presence of a hydroxy group ($3540 \mathrm{~cm}^{-1}$), an acetoxy group ($1729 \mathrm{~cm}^{-1}$) and an epoxy group $\left(860 \mathrm{~cm}^{-1}\right)$. The ${ }^{13} \mathrm{C}$ NMR spectrum proved retention of the oxygen substituents in positions 17 and 22 a ($\delta 74.95$ and 69.63) and epoxidation of the isopropylidene double bond (instead of $s p^{2}$-carbon signals the spectrum exhibited signals of C-O carbon atoms at $\delta 68.01$ and 63.27). Hydrolysis of monoacetates VIII and XIV afforded diols VII and XIII which were oxidized to ketols $I X$ and $X V$.

Lithium aluminium hydride reduction of diepoxide $V I$ took place only in the position 17,22 a, the other epoxy group in the side chain remaining intact ${ }^{3}$. The IR spectrum of the obtained epoxy alcohol X exhibited bands of an epoxy group (908 and $888 \mathrm{~cm}^{-1}$) and a hydroxyl ($3430 \mathrm{~cm}^{-1}$). The resistance of the hydroxyl toward oxidation and acetylation indicated its tertiary character. This was confirmed by the absence of signals of $\mathrm{CH}-\mathrm{O}$ grouping in the proton as well as carbon NMR spectra and by the presence of three quaternary carbon atoms of the type $\mathrm{C}-\mathrm{O}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum ($\delta 63.37,69.36$ and 74.37) of which the first two belonged to the epoxide group and the third to the $\mathrm{C}-\mathrm{OH}$ grouping in position 17. The configuration of the 17-hydroxy group was confirmed by the coupling constant $J(18,21 \alpha)=2.6 \mathrm{~Hz}$. Epoxy alcohol XI was
prepared by epoxidation of the known ${ }^{4}$ unsaturated alcohol $I I$ and characterized as acetate XII.

Because of an easier access of the attacking reagent to the 19(20)-double bond from the α-side (as evident from models), the epoxy groups in the side chain were assigned the α-configuration. This was confirmed by formation of an intramolecular hydrogen bond between the 17α-hydroxyl and the 19,20 -epoxy group in the compounds $X, X I I I-X V$ and by further arguments following from the NMR spectra (see Discussion).

Epoxidation of olefin $X V I$ afforded an unseparable mixture of α - and β-epoxides XVII. Moreover, we found that the epoxides rearranged during the chromatography because in an attempted separation we isolated also the ketone XXII (prepared in ref. ${ }^{1}$). The same rearrangement of an analogous epoxide was observed by us previously ${ }^{2}$. The $\alpha: \beta$ isomer ratio ($8: 9$) follows from the ratio of alcohols XVIII and XXIV isolated on reduction of the mixture of isomeric epoxides XVII with lithium aluminium hydride. The structure of both the alcohols was derived from ${ }^{1} \mathrm{H}$ NMR spectra: the 17α-hydroxy group effects a significant downfield shift of the $20-\mathrm{H}$ signal, accompanied by a smaller downfield shift of both methyl groups in the isopropyl substituent (see Table I), which is not possible for the 17β-hydroxyl. Compound XIX was described in ref. ${ }^{1}$, compounds $X X, X X I$ and XXIII in ref. ${ }^{2}$.

DISCUSSION

NMR Spectra

Complete structural assignment of the proton signals in triterpenes represents a difficult task even for spectra taken at high frequencies (500 MHz) because of a multitude of spin-spin interactions and overlapping of multiplets which, moreover, may have a higher order character. So far, the available pertinent data are only very sporadical and usually incomplete (see e.g. ref. ${ }^{6}$). To achieve the goal, it is necessary to combine various 1D and 2D NMR techniques and this approach has been used also in the present study. In the 1D NMR spectra (500 MHz) of the studied triterpenes $I I I-V I I, I X-X I I I$, $X V$ and XXII only the intense methyl signals were identifiable and several signals of protons on rings D and E in the neighbourhood of oxygen substituents or double bonds appeared at lower field $(\delta>2.00)$. Signals of interacting protons were assigned using 2D-COSY spectra that identified individual spin systems, isolated by carbon atoms $\mathrm{C}(4), \mathrm{C}(8), \mathrm{C}(10)$ and $\mathrm{C}(14)$ (and, according to the substitution type, also by $\mathrm{C}(17)$ and $\mathrm{C}(19)$). In most of the compounds studied (III - VII, IX, X, XIII and XV), the alicyclic protons form thus five spin systems $S 1-S 5$ (see e.g. ketol V in Fig. 1) whereas in the remaining compounds (XI, XII and XXII) their number is reduced to three by interconnecting the spin systems $S 3, S 4$ and $S 5$. The structural identification of the individual spin systems followed from the number of protons, signals unequivocally assignable according to the chemical shift and multiplicity (e.g. $\mathrm{CH}-\mathrm{O}$), characteristic long-range

Fig. 1
Spin systems ($S 1$ to $S 5$) of protons in compound V and schematic diagrams of the corresponding 2D-COSY subspectra: - diagonal peaks of protons of the given spin system, O diagonal peaks of another proton connected to the given spin system via long-range coupling, \square cross-peaks corresponding to geminal and vicinal couplings, \square cross-peaks corresponding to long-range couplings
Table I
${ }^{1} \mathrm{H}$ NMR chemical shifts (in ppm) of selected protons in compounds $I I I-X V, X V I I I, X X I I$ and XXIV ${ }^{a}$

Proton	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	$X V$	XVIII	XXII	XXIV
H-13	1.79	1.85	1.51	1.77	1.95	b	1.71	1.77	1.78	1.83	1.75	b	1.42	b	$1.29{ }^{c}$	b
H-15 α	$1.22{ }^{\text {c }}$	1.15	1.22	1.15	1.27	b	1.27	1.18	1.05	0.99	1.19	b	1.20	b	1.03	b
H-15 β	1.65	1.64	1.70	1.63	1.72	b	1.72	$1.65{ }^{\text {c }}$	1.71	1.71	1.65	b	1.67	b	$1.64{ }^{\text {c }}$	b
H-16 α	1.42	1.52	1.42	2.07	$1.37{ }^{\text {c }}$	b	1.41	$1.32^{\text {c }}$	1.49	$1.44{ }^{\text {c }}$	1.38	b	1.38	b	1.34^{c}	b
H-16 β	2.14	1.73	2.20	1.42^{c}	2.11	b	2.18	1.55^{c}	1.96	1.57	2.12	b	2.19	b	2.11	b
H-17	-	-	-	-	-	-	-	-	$1.71{ }^{\text {c }}$	1.96	-	-	-	-	2.51	-
H-18	2.70	2.70	2.95	1.90	2.28	2.31	2.55	1.54	$1.60{ }^{c}$	1.64	1.71	b	1.90	b	1.99	b
H-20 α	-	-	-	-	-	-	-	-	-	-	-	-	-	2.25	1.85	b
H-21 α	2.51	2.57	2.83	$1.26{ }^{\text {c }}$	2.26	b	$2.67{ }^{\text {d }}$	$1.32{ }^{\text {c }}$	1.44	$1.43{ }^{c}$	1.45	b	1.80	b	1.81	b
H-21 β	1.79	1.86	2.14	1.70	2.50	2.52	$2.72{ }^{\text {d }}$	a	1.78	1.81	1.81	b	2.17	b	1.75	b
$\mathrm{H}-22 \alpha$	$1.28{ }^{\text {c }}$	$1.57{ }^{c}$	2.74	2.19	2.03	b	$3.18{ }^{\text {d }}$	1.94	$1.55{ }^{\text {c }}$	$1.60{ }^{c}$	$1.74{ }^{\text {c }}$	b	3.16	b	2.29	b
H-22 β	1.97	$1.86{ }^{\text {c }}$	2.31	2.09	2.14	b	$2.62{ }^{\text {d }}$	1.70^{c}	2.07	2.05	2.00	b	2.35	b	2.15	b
$\mathrm{H}-22 \mathrm{a}$	3.91	5.33	-	2.96	4.25	5.55	-	1.97	4.01	5.27	3.90	5.35	-	b	-	b
H-23	0.852	0.846	0.846	0.861	0.848	0.843	0.844	0.853	0.851	0.845	0.853	0.850	0.848	0.837	0.839	0.837
H-24	0.796	0.796	0.787	0.804	0.796	0.797	0.789	0.800	0.799	0.798	0.799	0.801	0.790	0.790	0.786	0.789
H-25	0.800	0.833	0.811	0.866	0.839	0.843	0.819	0.855	0.851	0.850	0.850	0.850	0.828	0.837	0.814	0.837
H-26	1.003	1.038	0.898	1.022	1.045	1.077	0.974	1.036	1.044	1.080	1.023	1.070	0.913	0.979	0.892	1.035
H-27	1.062	1.053	1.038	1.039	0.990	0.981	0.930	0.992	0.950	0.933	1.011	0.999	0.987	0.979	0.938	0.954
H-29	1.735	1.741	1.830	1.254	-	-	-	1.302	1.300	1.302	1.313	1.320	1.392	0.907	0.973	0.863
H-30	1.692	1.697	1.789	1.238	-	-	-	1.289	1.285	1.289	1.307	1.306	1.392	0.849	0.969	0.803
OAc	-	2.09	-	-	-	2.12	-	-	-	2.06	-	2.12	-	-	-	-

[^1]Table II

Protons	III	IV	V	VI	VII	VIII	$I X$	X	XI	XII	XIII	XIV	$X V$	XXII
13,18	12.0	12.0	12.1	11.4	12.3	12.8	12.5	12.0	12.5	12.4	≈ 11.5	b	12.0	11.5
$15 \alpha, 15 \beta$	≈ 14	13.5	13.6	13.2	13.8	b	13.8	13.0	13.4	13.7	13.2	b	13.7	13.4
$15 \alpha, 16 \alpha$	4.1	4.0	4.6	4.5	4.3	b	4.7	4.3	4.2	4.0	4.5	b	4.6	4.5
$15 \alpha, 16 \beta$	3.1	3.1	2.9	2.8	3.1	b	2.8	2.2	2.6	3.0	2.9	b	2.8	3.0
$15 \beta, 16 \alpha$	≈ 14	13.5	13.6	13.5	13.8	b	13.4	b	≈ 13	13.7	≈ 13.5	b	13.7	b
15 $16,16 \beta$	4.1	3.8	4.4	4.5	4.1	b	4.3	b	4.1	4.3	4.2	b	4.4	4.4
$16 \alpha, 16 \beta$	13.2	13.2	13.0	13.5	13.3	b	12.8	b	14.1	13.8	13.7	b	13.3	13.6
$16 \alpha, 17$	-	-	-	-	-	-	-	-	≈ 4.5	4.4	-	-	-	5.0
$16 \beta, 17$	-	-	-	-	-	-	-	-	2.6	2.1	-	-	-	2.2
17,18	-	-	-	-	-	-	-	-	b	4.4	-	-	-	5.6
18,21 α	1.8	1.4	2.0	<2	1.8	≈ 1.5	1.9	2.6	2.0	1.8	1.7	b	2.4	1.2
$21 \alpha, 21 \beta$	14.0	13.4	14.0	14.2	14.3	≈ 14	$15.9{ }^{c}$	b	13.6	13.9	13.6	b	14.0	13.8
$21 \alpha, 22 \alpha$	4.5	4.5	7.2	8.6	4.8	b	7.8^{c}	$4.3{ }^{\text {d }}$	4.1	b	4.3	b	7.2	5.9
$21 \alpha, 22 \beta$	2.8	2.5	1.9	b	2.5	b	$4.3{ }^{\text {c }}$	b	3.1	2.8	2.7	b	1.8	5.2
$21 \beta, 22 \alpha$	b	b	13.4	10.7	14.3	≈ 12	10.8^{c}	$13.5{ }^{\text {d }}$	13.6	13.9	13.6	b	13.8	10.5
21 $\beta, 22 \beta$	5.4	b	5.4	8.8	6.6	≈ 8.5	7.8^{c}	b	4.1	4.0	3.8	b	5.3	5.2
$22 \alpha, 22 \beta$	12.4	b	14.6	15.7	14.4	b	$15.8{ }^{\text {c }}$	$13.5{ }^{\text {d }}$	11.7	12.0	≈ 12	b	15.0	16.3
$22 \alpha, 22 \mathrm{a}$	11.0	12.0	-	≈ 0	11.0	10.1	-	$13.5{ }^{d}$	10.9	11.3	11.0	11.5	-	-
22 $\beta, 22 \mathrm{a}$	4.5	4.9	-	4.5	4.5	6.5	-	$4.5{ }^{\text {d }}$	4.9	5.0	5.0	5.3	-	-
25,1 α	1.0	≈ 1	0.8	b	1.0	b	1.0	1.0	b	0.8	1.0	b	0.9	1.0
27,15 β	0.8	b	0.9	b	0.7	b	0.6	0.5	b	0.6	0.7	b	b	0.8

Table III
Carbon-13 chemical shifts (in ppm) of compounds $I I I-X V$ and $X X I I$

Carbon	$I I I$	$I V$	V	$V I$	VII	VIII	$I X$	X	$X I$	XII	XIII	XIV	XV
C-1	40.40	40.38	40.38	40.44	40.34	40.36	40.30	40.44	40.38	40.41	40.43	40.47	40.43
C-2	18.68	18.67	18.66	18.64	18.59	18.60	18.57	18.67	18.67	18.68	18.65	18.69	18.65
C-3	42.07	42.08	42.04	41.97	41.98	42.03	41.95	42.03	42.04	42.08	42.01	42.06	42.01
C-4	33.27	33.27	33.25	33.24	33.27	33.26	33.24	33.27	33.27	33.27	33.26	33.34	33.25
C-5	56.52	56.51	56.44	56.38	56.43	56.45	56.34	56.43	56.43	56.45	56.43	56.47	56.39
C-6	18.55	18.54	18.51	18.47	18.51	18.52	18.46	18.51	18.52	18.52	18.47	18.50	18.45
C-7	33.96	33.88	34.00	34.32	34.02	33.98	34.05	34.07	33.92	33.84	34.00	33.95	34.04
C-8	41.13	41.14	41.09	41.23	41.00	41.13	41.05	41.33	41.28	41.24	41.16	41.17	41.07
C-9	50.80	50.78	50.55	50.76	50.56	50.54	50.28	50.75	50.77	50.75	50.74	50.75	50.59
C-10	37.47	37.45	37.42	37.44	37.60	37.49	37.42	37.45	37.47	37.47	37.44	34.47	37.42
C-11	21.05	21.01	20.82	21.16	20.72	20.66	20.48	21.20	21.18	21.13	21.12	21.12	20.90
C-12	25.36	25.26	25.33	26.20	26.26	26.09	26.12	25.61	25.60	25.65	25.61	25.66	25.50
C-13	36.79	37.05	37.29	40.80	38.01	37.88	38.14	37.58	35.54	35.39	37.10	37.36	38.08
C-14	41.18	41.11	40.87	40.90	40.71	40.79	40.60	41.10	41.44	41.41	41.09	41.20	40.90
C-15	27.51	27.45	28.22	30.60	27.85	27.71	28.44	27.97	25.50	25.54	27.45	27.32	28.08
C-16	29.10	30.20	28.56	19.38	30.95	31.16	29.50	35.50	21.67	21.92	28.32	30.16	28.78

| Table III
 (Continued) | | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon | $I I I$ | $I V$ | V | $V I$ | $V I I$ | $V I I I$ | $I X$ | X | $X I$ | $X I I$ | $X I I I$ | $X I V$ | $X V$ | $X X I I$ |
| C-17 | 74.72 | 73.60 | $\approx 77.0^{a}$ | 60.36 | $\approx 77.0^{a}$ | 75.99 | 78.23 | 74.37 | 41.24 | 38.61 | 76.01 | 74.95 | 78.27 | 45.47 |
| C-18 | 47.83 | 48.00 | 49.35 | 41.11 | 61.10 | 60.64 | 61.20 | 45.58 | 41.96 | 41.25 | 45.70 | 46.69 | 47.00 | 40.67 |
| C-19 | 129.01 | 128.77 | 131.23 | 64.54 | 212.64 | 211.39 | 209.70 | 69.36 | 68.12 | 67.73 | 68.58 | 68.01 | 67.56 | 39.99 |
| C-20 | 128.14 | 127.63 | 126.40 | 65.00 | - | - | - | 63.37 | 65.29 | 65.31 | 63.51 | 63.27 | 63.65 | 28.32 |
| C-21 | 23.55 | 23.45 | 24.58 | 21.46 | 36.65 | 36.23 | 36.14 | 24.24 | 24.54 | 24.22 | 24.25 | 24.15 | 26.02 | 20.45 |
| C-22 | 31.84 | 27.45 | 37.55 | 30.72 | 29.72 | 25.77 | 35.01 | 18.87 | 32.78 | 28.71 | 29.44 | 24.54 | 34.11 | 37.68 |
| C-22a | 67.13 | 70.56 | 209.88 | 57.27 | 66.33 | 69.12 | 206.73 | 30.72 | 66.04 | 68.96 | 66.46 | 69.63 | 208.57 | 213.84 |
| C-23 | 33.35 | 33.34 | 33.35 | 33.30 | 33.32 | 33.31 | 33.31 | 33.33 | 33.33 | 33.34 | 33.32 | 33.28 | 33.33 | 33.35 |
| C-24 | 21.53 | 21.52 | 21.53 | 21.52 | 21.50 | 21.51 | 21.50 | 21.53 | 21.53 | 21.53 | 21.50 | 21.53 | 21.52 | 21.53 |
| C-25 | 16.27 | 16.24 | 16.20 | 16.44 | 16.27 | 16.22 | 16.17 | 16.37 | 16.34 | 16.30 | 16.34 | 16.32 | 16.30 | 16.15 |
| C-26 | 15.82 | 15.86 | 15.73 | 16.15 | 15.77 | 15.82 | 15.66 | 16.00 | 16.00 | 16.04 | 15.92 | 15.98 | 15.85 | 15.71 |
| C-27 | 14.80 | 14.87 | 14.35 | 14.36 | 14.44 | 14.46 | 14.01 | 14.55 | 14.31 | 14.32 | 14.70 | 14.79 | 14.36 | 14.08 |
| C-29 | 20.62 | 20.73 | 20.91 | 22.23 | - | - | - | 21.71 | 22.11 | 22.06 | 21.87 | 21.98 | 21.99 | 21.12 |
| C-30 ${ }^{b}$ | 20.62 | 20.65 | 20.73 | 20.48 | - | - | - | 20.34 | 20.83 | 20.83 | 20.52 | 20.50 | 20.62 | 20.35 |
| OAc | - | 170.74 | - | - | - | 170.15 | - | - | - | 171.06 | - | 171.08 | - | - |
| | | 21.25 | | | | 21.01 | | | | 21.19 | | 21.27 | | |

${ }^{a}$ Overlapped with the strong signal of solvent. ${ }^{b}$ The methyl signals may be interchanged.
couplings either with methyl signals (e.g. $J(1 \alpha, 25), J(15 \beta, 27)$ or $J(21 \beta, 29)$ and $J(21 \beta, 30)$ in derivatives with $19(20)$ double bond) or between protons of the same $(J(1 \beta, 3 \beta)$ in $S 1)$ or neighbouring spin systems $(J(18,21 \alpha)$ between $S 3$ and $S 5)$. The proton multiplets of the individual spin systems were then analyzed in the 1D and 2D-J-resolved spectra which enabled their structural assignment and mostly also determination of the coupling constants. Even in spite of significant overlap of signals in the range $\delta 1-2$, the appearance of strongly interacting systems in the analyzed spectra was only sparce (mostly protons $\mathrm{H}-7 \alpha$ and $\mathrm{H}-7 \beta$). The chemical shifts and coupling constants of the protons are summarized in Tables I and II. Since only the ring E was structurally modified, the chemical shifts and coupling constants of farther protons on rings $\mathrm{A}-\mathrm{C}$ were almost identical. The cis-annelation of rings D and E in compounds XI, XII and XXII followed from the small value of $J(17,18)$ (about 5 Hz) and in the 17 -substituted derivatives from the observed long-range coupling constants $J(18,21 \alpha)$ in the region $1.2-2.6 \mathrm{~Hz}$. The vicinal coupling constants for the E-ring protons were generally in accord with the chair conformation. The signals of the 23-, 24- and 25methyl groups on the ring A were only little sensitive to substitution on the ring E and their shifts corresponded to the values described for other triterpenic "3-deoxy" derivatives (see ref. ${ }^{7}$ and references therein), including the characteristic fine splitting of the 25 -methyl signal. The 26 - and 27 -methyl signals were located downfield, the 27 -methyl signal usually being broadened or split by long-range interaction with the $\mathrm{H}-15 \beta$ proton. In the isopropyl group, the 29- and 30 -methyl signals appeared as characteristic doublets ($J=6.5 \mathrm{~Hz}$), in the isopropylidene group, these signals showed homoallylic coupling with the proton $\mathrm{H}-21 \beta(J \approx 1.7$ and 1.2 Hz). According to a difference 1D NOE spectrum, the lowfield signals with a somewhat smaller coupling constant belonged to the exo-methyl group (cis relative to C-21). The α-configuration of the 19,20epoxy group and the structural assignment of the 29- and 30-methyl groups in the epoxy derivatives was proven using 2D-ROESY spectrum of the epoxy acetate XII. Whereas the lowfield methyl at $\delta 1.302$ showed ROESY peaks with the $\mathrm{H}-21 \alpha$ and $\mathrm{H}-21 \beta$ protons (and thus the syn-orientation relative to $\mathrm{C}-21$), the upfield methyl at δ 1.289 afforded ROESY peaks with the protons $\mathrm{H}-12 \alpha, \mathrm{H}-12 \beta$ and $\mathrm{H}-18$. This is in accord with the α-configuration of the 19,20 -epoxide for which models show close proximity of the methyl groups with the protons mentioned (2.6 to $3.1 \AA$). Protons of the tertiary as well as secondary OH groups, if detectable at all, appeared as singlets and gave thus no information on their orientation or intramolecular hydrogen bonds.

The carbon signals in ${ }^{13} \mathrm{C}$ NMR spectra of III - XV and XXII (Table III) were assigned on the basis of the carbon atom type $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right.$ or C distinguished by "attached proton test" spectra ${ }^{8}$), characteristic chemical shifts, substituent effects and comparison with literature data (see ref. ${ }^{9}$ and references therein). Substitution of the ring E had only very small effect on the chemical shifts of carbon atoms in the rings A - C.

Table IV
TAI-acylation shifts of selected protons and carbon atoms in hydroxy compounds III - V, VII, IX - XI and XV

Parameter	17α-OH derivatives					$22 \mathrm{a} \alpha-\mathrm{OH}$ derivative XI	$17 \alpha, 22 \mathrm{a} \alpha$-diOH derivatives		
	IV	V	XV	X	IX		III	XIII	VII
Proton									
H-13	0.07	0.04	0.00	0.08	0.10	0.03	0.11	0.11	0.12
H-15 $\alpha^{\text {d }}$	0.09	0.04	0.07	0.10	0.05	0.00	0.08	0.09	0.11
H-15 β	0.04	0.29	0.17	a	0.14	0.04	0.10	0.12	0.12
H-16 α	1.21	0.41	0.88	1.43	0.68	0.01	1.35	1.33	0.56
H-16 ${ }^{\text {d }}$	0.02	0.31	0.05	a	0.53	-0.36	-0.32	-0.39	0.55
H-17	-	-	-	-	-	0.32	-	-	-
H-18	1.21	0.58	1.11	1.29	0.31	0.08	1.23	1.32	1.10
H-21 α	0.01	0.06	-0.05	a	0.03	0.04	0.12	-0.06	0.15
H-21 β	0.05	-0.02	-0.01	a	-0.06	0.07	0.13	0.13	0.14
H-22 α	0.27	-0.10	-0.01	a	-0.18	0.15	0.62	0.52	0.26
H-22 β	-0.09	0.08	0.10	a	0.08	0.11	-0.03	0.02	0.29
H-22a	0.19	-	-	a	-	1.35	1.65	1.68	1.55
H-26	0.00	0.02	0.01	0.00	0.00	0.04	0.05	0.05	0.06
H-27	0.11	0.04	0.07	0.10	0.06	0.00	0.11	0.09	0.11
H-29 ${ }^{\text {b }}$	-0.09	-0.04	-0.08	-0.06	-	0.02	-0.07	-0.05	-
H-30 ${ }^{\text {b }}$	-0.08	-0.06	-0.08	-0.07	-	0.01	-0.06	-0.08	-

Carbon

C-13	1.22	-0.40	0.33	0.81	-0.73	-0.12	1.48	1.32	c
C-14	-0.11	-0.09	0.03	-0.13	0.07	-0.06	0.06	-0.09	${ }^{c}$
C-15	0.58	0.31	0.32	0.46	-0.12	-0.03	0.63	0.48	c
C-16	-5.78	-2.55	-4.02	-4.87	-3.69	0.18	-4.57	-4.10	c
C-17	17.43	12.61	10.87	15.92	10.07	-2.68	15.79	12.96	c
C-18	-6.44	-2.70	-4.78	-6.22	-1.09	-0.68	-6.02	-6.23	c
C-19	-2.61	-1.18	-2.88	-1.96	-2.19	-0.58	-3.52	-3.37	c
C-20	0.97	-1.40	-1.52	-0.67	-	0.34	0.98	-0.59	c
C-21	-0.31	1.41	0.84	0.02	1.29	-0.43	-0.61	0.09	c
C-22	-0.25	1.36	1.16	-0.16	0.69	-4.20	-4.77	-4.60	c
C-22a	-1.41	-4.44	-4.72	-1.52	-5.03	7.27	5.82	5.20	c
C-26	0.05	0.05	0.10	0.08	0.00	0.00	0.09	0.09	c
C-27	0.00	-0.05	-0.07	0.05	-0.07	0.00	0.06	0.04	c
C-29	-0.14	-0.04	0.06	0.03	-	-0.10	-0.03	-0.03	c
C-30	-0.14	0.02	-0.13	-0.31	-	-0.03	-0.06	-0.28	c

[^2]The presence of OH groups in the hydroxy derivatives was proven by in situ acylation with trichloroacetyl isocyanate (TAI-method; see refs ${ }^{10,11}$), followed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The observed TAI-acylation shifts are given in Table IV. The spectra of compounds with tertiary OH group ($I V, V, I X, X$ and $X V$) showed significant downfield TAI-acylation shifts of protons in positions $\beta(16 \alpha, 16 \beta, 18$ or $22 a)$ and their values reflected the effect of substitution in the position 22a. Moreover, the derivatives with secondary OH group (alcohol XI and diols III, VII and XIII) exhibited characteristic acylation shifts in the position α (1.35 ppm for $X I, 1.55-1.68 \mathrm{ppm}$ for III, VII and XIII) and smaller downfield shifts of protons in the position $\beta(\mathrm{H}-22 \alpha, \mathrm{H}-22 \beta$ and,

Table V
Wavenumbers $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right)$, halfbandwidths $\left(\Delta \nu_{1 / 2}, \mathrm{~cm}^{-1}\right)$ and relative intensities $\left(\varepsilon_{\mathrm{rel}}=100 \varepsilon_{i} / \Sigma \varepsilon_{i}\right)$ of O-H stretching vibration in hydroxy derivatives II - V, VII - XI, XIII - XV, XVIII - XXI and XXIII

Compound	Free OH						Associated OH					
							$17-22 \mathrm{a}$			17-19,20		
	$v_{\text {max }}$	$\Delta \nu_{1 / 2}$	$\varepsilon_{\text {rel }}$	$v_{\text {max }}$	$\Delta v_{1 / 2}$	$\varepsilon_{\text {rel }}$	$v_{\text {max }}$	$\Delta \nu_{1 / 2}$	$\varepsilon_{\text {rel }}$	$v_{\text {max }}$	$\Delta \nu_{1 / 2}$	$\varepsilon_{\text {rel }}$
II	3626	21	65	-	-	-	-	-	-	-	-	-
III	3626	26	11	-	-	-	3571	28	46	3556	26	43
IV	-	-	-	-	-	-	3596	15	74	3565	26	26
V	-	-	-	-	-	-	3589	17	51	3547	30	49
VII	3627	20	13	3612	17	34	3577	22	37	3532^{a}	25	16
VIII	-	-	-	$3606^{\text {b }}$	16	20	3596	12	80	-	-	-
IX	-	-	-	-	-	-	$3589{ }^{\text {c }}$	18	100	-	-	-
X	-	-	-	-	-	-	-	-	-	3549	37	100
XI	3625	22	45	3600	16	55	-	-	-	-	-	-
XIII	-	-	-	-	-	-	3551	28	43	3536	34	57
XIV	-	-	-	-	-	-	-	-	-	3541	40	100
XV	-	-	-	-	-	-	-	-	-	3519	41	100
XVIII	$3628^{\text {b }}$	14	13	3605	25	87	-	-	-	-	-	-
XIX	3625	22	70	3603	21	30	-	-	-	-	-	-
XX	3630	15	27	3620	22	29	3575	35	44	-	-	-
XXI	-	-	-	-	-	-	3596	14	100	-	-	-
XXIII	-	-	-	-	-	-	3585	18	100	-	-	-

[^3]in addition, $\mathrm{H}-17$ in alcohol $X I$). The ${ }^{13} \mathrm{C}$ NMR spectra showed characteristic differences between tertiary and secondary alcohols in the TAI-acylation shifts for the α-position ($10-17.5 \mathrm{ppm}$ at $\mathrm{C}-17$ vs $5.2-7.3 \mathrm{ppm}$ at $\mathrm{C}-22 \mathrm{a}$) and smaller upfield shifts for the neighbouring β-positions (-1.4 to -6.4 ppm), in accord with the literature ${ }^{12}$.

IR Spectra

The IR spectroscopy was used for the study of intramolecular association of the 17α hydroxy group which can form a hydrogen bond with an acceptor in the side chain as well as with a neighbouring group in position 22a, depending on the modification of the side chain and substitution in the position 22a. Parameters of the observed bands, $v(\mathrm{OH})$, are given in Table V . The following conclusions can be made.

The 22a α-monohydroxy derivatives $I I, X I$ and $X I X$ exhibited only a free hydroxyl band, irrespective of the type of the side chain, because the distance of the OH group from the potential acceptor is too great. Naturally, also the 17α-hydroxy derivative XVIII with the isopropyl side chain, unsubstituted in position 22a, had only a free hydroxyl band. The bands had a distinguished doublet structure due to rotation isomerism of the OH group ${ }^{13,14}$. In diol XX, monoacetate XXI and ketol XXIII with the isopropyl side chain, the 17α-hydroxyl formed an intramolecular hydrogen bond with the 22asubstituent. Judging from the weak hydrogen bond and mutual orientation of the 17α hydroxy and 22a-keto groups, we assume that in ketols $V, I X$ and XXIII the 17α-hydroxyl is associated with the keto group by means of its π-orbital (see refs ${ }^{15,16}$). In the monoacetates $I V, V I I I$ and XXI, the hydroxyl associates with the electron pair of the alkoxy group (ref. ${ }^{17}$).

The 17α-hydroxy derivatives $I I I, I V$ and V, containing the $19(20)$ double bond, exist in solution as an equilibrium mixture of two forms with intramolecular hydrogen bond involving either the double bond or the neighbouring 22a-substituent, the latter being weaker (smaller $\Delta v(\mathrm{OH})$). In the spectrum of diol III, the 17α-hydroxyl bands of both the hydrogen-bonded forms overlapped and also a small amount of the conformer with nonassociated $22 \mathrm{a} \alpha-\mathrm{OH}$ group was present. The 19-oxo group does not participate in the association and thus in compounds VII - IX the $17 \alpha-\mathrm{OH}$ group forms hydrogen bond only with substituents in position 22a. The parameters of the $v(\mathrm{OH})$ bands for 19 -oxo, 19 -isopropyl and 19 -isopropylidene derivatives were practically identical (see Table V).

When an α-epoxy group is present in position 19,20 then, because of its basicity and good steric accessibility, the $17 \alpha-\mathrm{OH}$ group in compounds X, XIII - XV forms a hydrogen bond only to the epoxy group, irrespective of the substituent in position 22a. In diol XIII the band due to 17α-hydroxy group associated with the epoxy group overlapped with that of 22 a α-hydroxyl associated with the 17α hydroxyl. The presence of intramolecular hydrogen bond to the $19,20 \alpha$-epoxy group in compounds X, XIII - XV confirms the cis-configuration of the oxygen groups in positions 17 and 19 .

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected．Optical rotation was measured in chloroform on an automatic polarimeter ETL－NPL（Bendix－Ericsson）with an accuracy $\pm 2^{\circ}$ ．Infrared spectra were recorded in chloroform（unless stated otherwise）on UR－20（Zeiss，Jena） and PE 684 （Perkin－Elmer）spectrometers，wavenumbers are given in cm^{-1} ．Hydroxyl stretching vi－ brations were measured in tetrachloromethane at concentrations lower than $5 \cdot 10^{-3} \mathrm{~mol} \mathrm{l}^{-1}$ on a PE 684 instrument equipped with a datastation and their parameters were obtained by mathematical sep－ aration using the Cauchy profile function（accuracy minimum $1 \mathrm{~cm}^{-1}$ for $v_{\max }$ and $2 \mathrm{~cm}^{-1}$ for $\Delta v_{1 / 2}$ ）． Proton and ${ }^{13} \mathrm{C}$ NMR spectra were measured on FT NMR spectrometers Varian XL－200 $\left({ }^{1} \mathrm{H}\right.$ at 200 MHz and ${ }^{13} \mathrm{C}$ at 50.3 MHz$)$ or Varian UNITY－500（ ${ }^{1} \mathrm{H}$ at 500 MHz and ${ }^{13} \mathrm{C}$ at 125.7 MHz ）in deute－ riochloroform with tetramethylsilane as internal standard（for the ${ }^{13} \mathrm{C}$ NMR data $\delta\left(\mathrm{CDCl}_{3}\right)=77.0$ $\mathrm{ppm})$ ．For the previously prepared compounds XVIII and XXIV only the ${ }^{1} \mathrm{H}$ NMR spectra were measured on a CW spectrometer Varian HA－100（at 100 MHz ）．Optical rotatory dispersion was measured on a JASCO－ORD／UV－5 instrument in dioxane，CD spectra were taken on a Roussel－Jouan 185 spectrometer，also in dioxane．Column chromatography was performed on silica gel（Silpearl， Kavalier，Votice）or neutral alumina．Preparative thin－layer chromatography was carried out on Merck 60G silica gel．Spots were detected by UV light at 254 nm after spraying with 0.2% morin solution in methanol．Purity of the samples was checked by thin－layer chromatography on Silufol （Kavalier，The Czech Republic），detection with 10% ethanolic solution of phosphomolybdic acid． Analytical samples were dried over phosphorus pentoxide under diminished pressure at $100{ }^{\circ} \mathrm{C}$ for 10 h ． The＂usual work－up＂means the following procedure：the reaction mixture was diluted with water，the product was taken up in ether，the ethereal extract was repeatedly washed with water and then in succession with dilute $(1: 4)$ hydrochloric acid，water， 5% sodium carbonate and water．Solutions in organic solvents were dried over anhydrous sodium sulfate．

E－Homo－28－nor－17 α－lup－19（20）－ene－17，22a α－diol（III）
Osmium tetroxide（ $900 \mathrm{mg}, 3.54 \mathrm{mmol}$ ）was added to a solution of diene ${ }^{3} I(1190 \mathrm{mg}, 2.91 \mathrm{mmol})$ in ether $(150 \mathrm{ml})$ and the reaction mixture was set aside in the dark at room temperature for 14 days． Lithium aluminium hydride（ $700 \mathrm{mg}, 18.45 \mathrm{mmol}$ ）was added，the mixture was refluxed for 4 h and the excess hydride was decomposed with ethyl acetate．The usual work－up gave crude product（ 1110 mg ） which was purified by chromatography on a silica gel column（ 80 g ）．Elution with benzene afforded 680 mg （53\％）of diol III，m．p． $270-272{ }^{\circ} \mathrm{C}$（ethyl acetate），$[\alpha]_{D}-46^{\circ}$（c 0．54）．For $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}$（442．7）calcu－ lated： $81.39 \% \mathrm{C}, 11.38 \% \mathrm{H}$ ；found： $81.22 \% \mathrm{C}, 11.50 \% \mathrm{H}$ ．

22a⿱⿰㇒一乂心－Acetoxy－E－homo－28－nor－17 α－lup－19（20）－en－17－ol（IV）
Diol III（ $500 \mathrm{mg}, 1.13 \mathrm{mmol}$ ）was acetylated with a mixture of acetic anhydride and pyridine（ $1: 1$ ） at room temperature for 48 h ．Yield $440 \mathrm{mg}(80 \%)$ of monoacetate $I V$ ，m．p． $233-234.5^{\circ} \mathrm{C}$（chloro－ form－methanol），$[\alpha]_{D}-36^{\circ}$（c 0．43）．IR spectrum： $3580,1724,1250,1$ 035．For $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{3}$（484．7） calculated： $79.28 \% \mathrm{C}, 10.81 \% \mathrm{H}$ ；found： $79.40 \% \mathrm{C}, 11.02 \% \mathrm{H}$ ．

17－Hydroxy－E－homo－28－nor－17 α－lup－19（20）－en－22a－one（ V ）
Chromium trioxide（ $120 \mathrm{mg}, 1.20 \mathrm{mmol}$ ）was added to a solution of diol $I I I(170 \mathrm{mg}, 0.38 \mathrm{mmol})$ in pyridine（ 15 ml ）and the mixture was allowed to stand at room temperature for 2 days with intermit－ tant stirring．After the usual work－up procedure，the product was purified by column chromatography on silica gel $(20 \mathrm{~g})$ ．Elution with benzene afforded $130 \mathrm{mg}(77 \%)$ of ketol V ，m．p． $250-252.5^{\circ} \mathrm{C}$
(benzene), $[\alpha]_{\mathrm{D}}-66^{\circ}$ (c 0.22). ORD: $[\Theta]_{400}-1040^{\circ},[\Theta]_{328}-4160^{\circ},[\Theta]_{295}-440^{\circ},[\Theta]_{263}-5470^{\circ}$. CD spectrum (c 0.061): $\Delta \varepsilon-1.33(313 \mathrm{~nm}), \Delta \varepsilon-6.74(227 \mathrm{~nm})$. IR spectrum: $3550,1713,1075$. For $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}$ (440.7) calculated: $81.76 \% \mathrm{C}, 10.98 \% \mathrm{H}$; found: $82.03 \% \mathrm{C}, 11.15 \% \mathrm{H}$.

17,22a $\alpha ; 19,20$-Diepoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupane ($V I$)

A solution of perbenzoic acid ($864 \mathrm{mg}, 6.26 \mathrm{mmol}$) in chloroform was added to a cold solution of olefin ${ }^{3} I(1070 \mathrm{mg}, 2.62 \mathrm{mmol})$ and the reaction mixture was set aside in a refrigerator overnight. Then it was washed repeatedly with 5% sodium carbonate solution, water, 5% potassium iodide solution, water, 5% sodium sulfite solution and again with water. After drying and evaporation of the solvent, the residue was chromatographed on a column of alumina (50 g , activity IV). Elution with chloroform gave the diepoxide $V I(730 \mathrm{mg}, 63 \%)$, m.p. $266-269^{\circ} \mathrm{C}$ (benzene-hexane), $[\alpha]_{\mathrm{D}}-49^{\circ}$ (c 0.62). IR spectrum: 898, 890. For $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}$ (440.7) calculated: $81.76 \% \mathrm{C}, 10.98 \% \mathrm{H}$; found: $81.50 \% \mathrm{C}, 11.05 \% \mathrm{H}$.

17,22 α-Dihydroxy-28,29,30-trinor-17 α-gammaceran-19-one (VII)

A solution of potassium hydroxide in ethanol $(5 \%, 10 \mathrm{ml})$ was added to a solution of acetate VIII $(180 \mathrm{mg}, 0.39 \mathrm{mmol})$ in benzene (30 ml). After standing at room temperature for 1 day, the deposited crystals were collected and washed with ethanol and water. Crystallization from ethanol gave 95 mg (58\%) of diol VII, m.p. $324-326{ }^{\circ} \mathrm{C}$ (decomp.). IR spectrum (Nujol): 1705,1066 . For $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{3}$ (416.6) calculated: $77.83 \% \mathrm{C}, 10.65 \% \mathrm{H}$; found: $77.60 \% \mathrm{C}, 10.72 \% \mathrm{H}$.

22α-Acetoxy-17-hydroxy-28,29,30-trinor-17 α-gammaceran-19-one (VIII) and 22a α-Acetoxy-19,20-epoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupan-17-ol (XIV)

Ozone was introduced into a solution of olefin $I V(510 \mathrm{mg}, 1.05 \mathrm{mmol})$ in ethyl acetate (150 ml) under cooling with solid carbon dioxide until the solution became violet. Most of the ethyl acetate was distilled off in vacuo at room temperature and the residue was treated with 80% acetic acid (30 ml) and zinc powder. The reaction mixture was shaken for 1 h and then set aside at room temperature overnight. The remaining zinc was removed by filtration, the filtrate was diluted with ether and the ethereal solution was repeatedly washed with 5% sodium carbonate solution and water. After drying and evaporation, the residue (500 mg) was chromatographed on a column of silica gel (75 g). Elution with benzene afforded 150 mg (28%) of epoxy derivative XIV, m.p. $261-265^{\circ} \mathrm{C}$ (benzene-ethanol), $[\alpha]_{\mathrm{D}}-21^{\circ}$ (c 0.58). IR spectrum: 3 540, $1729,1252,1042$, 860 . For $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{4}$ (500.7) calculated: 76.75% C, 10.47% H; found: 76.74% C, 10.36% H. Further elution with the same solvent gave 300 $\mathrm{mg}(62 \%)$ of ketone VIII, m.p. $257.5-259{ }^{\circ} \mathrm{C}$ (benzene-ethanol), $[\alpha]_{\mathrm{D}}-57^{\circ}$ (c 0.68). ORD: $[\Theta]_{400}$ $-470^{\circ},[\Theta]_{320}-6790^{\circ},[\Theta]_{313}-5380^{\circ},[\Theta]_{309}-5620^{\circ},[\Theta]_{297} 0^{\circ},[\Theta]_{275}+6320^{\circ},[\Theta]_{250} 3740^{\circ}$. IR spectrum: 3 600, 3 430, $1728,1716,1245,1$ 036. For $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4}$ (458.7) calculated: $75.94 \% \mathrm{C}, 10.11 \% \mathrm{H}$; found: $76.08 \% \mathrm{C}, 10.01 \% \mathrm{H}$.

17-Hydroxy-28,29,30-trinor-17 α-gammacerane-19,22-dione (IX)

A solution of chromium trioxide ($150 \mathrm{mg}, 1.50 \mathrm{mmol}$) in N, N-dimethylformamide (8 ml) was added to a solution of diol VII $(150 \mathrm{mg}, 0.36 \mathrm{mmol})$ in the same solvent $(30 \mathrm{ml})$. The reaction mixture was allowed to stand at room temperature for 4 days. The usual work-up afforded $90 \mathrm{mg}(60 \%)$ of ketol $I X$, m.p. $273-275{ }^{\circ} \mathrm{C}$ (chloroform-methanol), $[\alpha]_{\mathrm{D}}-49^{\circ}$ (c 0.53). CD spectrum (c 0.054): $\Delta \varepsilon-1.32$ $(316 \mathrm{~nm}), \Delta \varepsilon-2.05(306 \mathrm{~nm}), \Delta \varepsilon-2.13(297 \mathrm{~nm})$. IR spectrum: $3560,3425,1717,1050$. For $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3}$ (414.6) calculated: $78.21 \% \mathrm{C}, 10.21 \% \mathrm{H}$; found: $77.95 \% \mathrm{C}, 10.15 \% \mathrm{H}$.

19,20-Epoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupan-17-ol (X)
Lithium aluminium hydride ($500 \mathrm{mg}, 13.18 \mathrm{mmol}$) in ether (100 ml) was added to a solution of diepoxide $V I(650 \mathrm{mg}, 1.47 \mathrm{mmol})$ in benzene $(10 \mathrm{ml})$. After reflux for 2 h , the unreacted hydride was destroyed with ethyl acetate. The usual work-up gave alcohol X ($500 \mathrm{mg}, 77 \%$), m.p. $289-293{ }^{\circ} \mathrm{C}$ (benzene-ethyl acetate), $[\alpha]_{\mathrm{D}}-18.5^{\circ}$ (c 0.43). IR spectrum: 3430,1074 , 908, 888. For $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}$ (442.7) calculated: $81.39 \% \mathrm{C}, 11.38 \% \mathrm{H}$; found: $81.22 \% \mathrm{C}, 11.37 \% \mathrm{H}$.

19,20-Epoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupan-22a α-ol (XI)

3-Chloroperbenzoic acid $(60 \%, 100 \mathrm{mg}, 0.35 \mathrm{mmol})$ was added to a cold solution of olefin ${ }^{4} I I(100 \mathrm{mg}$, $0.23 \mathrm{mmol})$ in chloroform (10 ml) and the solution was allowed to stand for 24 h in a refrigerator. The work-up procedure was the same as described for the preparation of diepoxide VI and the obtained product was purified by preparative thin-layer chromatography ($200 \times 200 \times 0.7 \mathrm{~mm}$ layer) in heptane-ether $(9: 1)$ to yield $62 \mathrm{mg}(60 \%)$ of epoxide $X I$, m.p. $251-252{ }^{\circ} \mathrm{C}$ (chloroform-methanol), $[\alpha]_{\mathrm{D}}-6^{\circ}$ (c 0.55). IR spectrum: $3595,1031,881,862$. For $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}$ (442.7) calculated: $81.39 \% \mathrm{C}$, $11.38 \% \mathrm{H}$; found: $81.55 \% \mathrm{C}, 10.19 \% \mathrm{H}$.

19,20-Epoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupan-22a α-yl Acetate (XII)

Alcohol $X I(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ was acetylated under the same conditions as the diol III. The yield of the title compound XII was $30 \mathrm{mg}(69 \%)$, m.p. $225-227^{\circ} \mathrm{C}$ (chloroform-methanol), $[\alpha]_{\mathrm{D}}+8^{\circ}$ (c 0.46). IR spectrum: $1723,1250,1028,884,861$. For $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{3}(484.7)$ calculated: $79.28 \% \mathrm{C}, 10.81 \% \mathrm{H}$; found: $79.48 \% \mathrm{C}, 10.75 \% \mathrm{H}$.

19,20-Epoxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupane-17,22a α-diol (XIII)

Ethanolic potassium hydroxide (5 ml of 5% solution) was added to a solution of acetate XIV (50 mg , $0.10 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ and the mixture was refluxed for 4 h . The usual work-up afforded 40 mg (87%) of diol XIII, m.p. $252-255^{\circ} \mathrm{C}$ (chloroform-methanol), $[\alpha]_{D}-16^{\circ}$ (c 0.47). IR spectrum: 3525 , 1040 , 879. For $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$ (458.7) calculated: $78.55 \% \mathrm{C}, 10.99 \% \mathrm{H}$; found: $78.70 \% \mathrm{C}, 10.85 \% \mathrm{H}$.

19,20-Epoxy-17-hydroxy-E-homo-28-nor-17 $\alpha, 19 \beta$-lupan-22a-one (XV)

Diol XIII ($40 \mathrm{mg}, 0.09 \mathrm{mmol}$) was oxidized with chromium trioxide ($30 \mathrm{mg}, 0.30 \mathrm{mmol}$) in pyridine (5 ml) under the same conditions as the diol $I I I$. The crude product was chromatographed on a column of silica gel (5 g). Elution with benzene-ether ($9: 1$) afforded $35 \mathrm{mg}(88 \%)$ of ketol XV , m.p. $301-304{ }^{\circ} \mathrm{C}$ (ether-hexane), $[\alpha]_{\mathrm{D}}-64^{\circ}$ (c 0.64). IR spectrum: $3510,1715,1036,863,853$. For $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$ (456.7) calculated: $78.89 \% \mathrm{C}, 10.59 \% \mathrm{H}$; found: $78.60 \% \mathrm{C}, 10.44 \% \mathrm{H}$.

Epoxidation of Olefin XVI

A solution of perbenzoic acid ($202 \mathrm{mg}, 1.46 \mathrm{mmol}$) in benzene (10 ml) was added to a solution of olefin ${ }^{1}$ XVI ($500 \mathrm{mg}, 1.22 \mathrm{mmol}$) in benzene (15 ml). After standing at room temperature for 5 h , the reaction mixture was diluted with ether and processed as described for the preparation of the diepoxide VI. Crystallization from benzene-ethanol gave $470 \mathrm{mg}(90 \%)$ of epoxide XVII, m.p. $170-174{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}+30^{\circ}$ (c 0.64). IR spectrum: 915 , 897. For $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$ (426.7) calculated: $84.44 \% \mathrm{C}, 11.81 \% \mathrm{H}$; found: $84.18 \% \mathrm{C}, 11.95 \% \mathrm{H}$.

E-Homo-28-nor-17 α-lupan-17-ol (XVIII) and E-Homo-28-nor-17ß-lupan-17-ol (XXIV)
A mixture of epoxide XVII ($230 \mathrm{mg}, 0.54 \mathrm{mmol}$), lithium aluminium hydride ($200 \mathrm{mg}, 5.27 \mathrm{mmol}$) and ether (60 ml) was refluxed for 12 h . After decomposition of the reaction mixture with ethyl acetate and the usual work-up, the obtained mixture of alcohols XVIII and XXIV (200 mg) was separated by column chromatography on alumina (50 g , activity $I I I$). Elution with light petroleum-ether ($99: 1$) gave 90 mg (39\%) of alcohol XXIV, m.p. $137.5-139.5^{\circ} \mathrm{C}$ (benzene-ethanol), $[\alpha]_{\mathrm{D}}+26^{\circ}$ (c 0.66). IR spectrum: 3620,1090 . For $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}$ (428.7) calculated: $84.04 \% \mathrm{C}, 12.23 \% \mathrm{H}$; found: $83.76 \% \mathrm{C}$, $12.40 \% \mathrm{H}$.

Further elution with the same solvent mixture afforded 80 mg (35%) of alcohol XVIII, m.p. $222.5-223.5^{\circ} \mathrm{C}$ (ether-hexane), $[\alpha]_{\mathrm{D}}+37^{\circ}$ (c 0.64). IR spectrum: $3615,1090,1031$. For $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}$ (428.7) calculated: $84.04 \% \mathrm{C}, 12.23 \% \mathrm{H}$; found: $83.91 \% \mathrm{C}, 12.20 \% \mathrm{H}$.

Financial support from the Grant Agency of the Czech Republic (No. 203/93/2468) is gratefully acknowledged.

REFERENCES

1. Vystrcil A., Krecek V., Budesinsky M.: Collect. Czech. Chem. Commun. 39, 2494 (1974).
2. Vystrcil A., Krecek V., Budesinsky M.: Collect. Czech. Chem. Commun. 39, 3131 (1974).
3. Vystrcil A., Krecek V., Budesinsky M.: Collect. Czech. Chem. Commun. 48, 1499 (1983).
4. Vystrcil A., Krecek V., Protiva J., Budesinsky M.: Collect. Czech. Chem. Commun. 56, 886 (1991).
5. Protiva J., Krecek V., Kreckova J., Klinotova E., Vystrcil A.: Collect. Czech. Chem. Commun. 48, 928 (1983).
6. Ammann W., Richarz R., Wirthlin T., Wendisch D.: Org. Magn. Reson. 20, 260 (1982).
7. Klinot J., Budesinsky M., Svetly J.: Collect. Czech. Chem. Commun. 55, 766 (1990).
8. Patt S. L., Shoolery J. N.: J. Magn. Reson. 46, 535 (1982).
9. Budesinsky M., Klinot J.: Collect. Czech. Chem. Commun. 54, 1928 (1989).
10. Goodlett V. W.: Anal. Chem. 37, 431 (1965).
11. Samek Z., Budesinsky M.: Collect. Czech. Chem. Commun. 44, 558 (1979).
12. Bose A. K., Srinivasan P. R.: Tetrahedron 31, 3025 (1975).
13. Joris L., Schleyer P. R., Osawa E.: Tetrahedron 24, 4759 (1968).
14. van der Maas J. H., Lutz E. T. G.: Spectrochim. Acta, A 30, 2005 (1974).
15. Joris L., Schleyer P. R.: J. Am. Chem. Soc. 90, 4599 (1968).
16. Suga T., Shishibori T., Matsura T.: J. Chem. Soc., Perkin Trans. 1 1972, 171.
17. Wright R. W., Marchessault R. H.: Can. J. Chem. 46, 2567 (1968).

[^0]: * Part CIV in the series Triterpenes; Part CIII: Collect. Czech. Chem. Commun. 59, 1420 (1994).

[^1]: Typical chemical shift values of A, B and C ring protons (derived for compound V) are: $\mathrm{H}-1 \alpha 0.75 ; \mathrm{H}-1 \beta 1.62 ; \mathrm{H}-2 \alpha 1.37 ; \mathrm{H}-2 \beta 1.58 ; \mathrm{H}-3 \alpha 1.12 ;$
 $\mathrm{H}-3 \beta 1.35 ; \mathrm{H}-50.72 ; \mathrm{H}-6 \alpha 1.50 ; \mathrm{H}-6 \beta 1.30 ; \mathrm{H}-7 \alpha \approx 1.38 ; \mathrm{H}-7 \beta \approx 1.38 ; \mathrm{H}-9 \approx 1.30 ; \mathrm{H}-11 \alpha 1.46 ; \mathrm{H}-11 \beta 0.96 ; \mathrm{H}-12 \alpha 1.15 ; \mathrm{H}-12 \beta 1.28 .{ }^{b}$ The parameter value could not be determined (1D NMR spectra at 100 MHz and/or 200 MHz were measured only). ${ }^{c}$ The position of signals was derived from 2D-COSY spectrum only. ${ }^{d}$ The parameter values were obtained from simulation-iteration analysis of four-spin system of protons in positions 21 and 22.

[^2]: ${ }^{a}$ The parameter value could not be determined. ${ }^{b}$ The values may be interchanged. ${ }^{c}$ The carbon-13 NMR spectrum of TAC-derivative was not obtained due to very poor solubility.

[^3]: ${ }^{a}$ Band due to self-association. ${ }^{b}$ Shoulder. ${ }^{c}$ Asymmetric band.

